Mathematical Summary (sum of e−αre^{-\alpha r}e−αr waves)
1) Ansatz (two particles A and B)
Model each particle as a monochromatic, localized, isotropic source of a complex scalar field (the “matter wave”): ψA(r,t)=A e−α∣r−rA∣ e−iω1t,ψB(r,t)=B e−β∣r−rB∣ e−iω2t,\psi_A(\mathbf r,t)=A\,e^{-\alpha|\mathbf r-\mathbf r_A|}\,e^{-i\omega_1 t},\qquad \psi_B(\mathbf r,t)=B\,e^{-\beta|\mathbf r-\mathbf r_B|}\,e^{-i\omega_2 t},ψA(r,t)=Ae−α∣r−rA∣e−iω1t,ψB(r,t)=Be−β∣r−rB∣e−iω2t,
and superpose: Ψ(r,t)=ψA(r,t)+ψB(r,t).\Psi(\mathbf r,t)=\psi_A(\mathbf r,t)+\psi_B(\mathbf r,t).Ψ(r,t)=ψA(r,t)+ψB(r,t).
Switch to spherical coordinates around BBB: write r=rB+s\mathbf r=\mathbf r_B+\mathbf sr=rB+s with r=∣s∣≪Rr=|\mathbf s|\ll Rr=∣s∣≪R, and define R≡∣rB−rA∣,∣r−rB∣=r,∣r−rA∣=∣R−s∣.R\equiv|\mathbf r_B-\mathbf r_A|,\qquad |\mathbf r-\mathbf r_B|=r,\qquad |\mathbf r-\mathbf r_A|=|\mathbf R-\mathbf s|.R≡∣rB−rA∣,∣r−rB∣=r,∣r−rA∣=∣R−s∣.
For r≪Rr\ll Rr≪R, ∣R−s∣≈R−rcosθ+O(r2/R),|\mathbf R-\mathbf s|\approx R- r\cos\theta + O(r^2/R),∣R−s∣≈R−rcosθ+O(r2/R),
so near BBB: ψA(r,t)≈A e−αR e+αrcosθ e−iω1t,ψB(r,t)=B e−βr e−iω2t.\psi_A(\mathbf r,t)\approx A\,e^{-\alpha R}\,e^{+\alpha r\cos\theta}\,e^{-i\omega_1 t},\qquad \psi_B(\mathbf r,t)=B\,e^{-\beta r}\,e^{-i\omega_2 t}.ψA(r,t)≈Ae−αRe+αrcosθe−iω1t,ψB(r,t)=Be−βre−iω2t.
At the point B0B_0B0 (i.e. r=0r=0r=0), the contribution from AAA is simply ψA(B0,t)=A e−αR e−iω1t.\psi_A(B_0,t)=A\,e^{-\alpha R}\,e^{-i\omega_1 t}.ψA(B0,t)=Ae−αRe−iω1t.



2) Which wave equation to use?
The correct free Schrödinger equation is iℏ ∂tΨ=−ℏ22m ∇2Ψ.i\hbar\,\partial_t\Psi = -\frac{\hbar^2}{2m}\,\nabla^2\Psi.iℏ∂tΨ=−2mℏ2∇2Ψ.
Its stationary states are oscillatory plane/spherical waves; an envelope e−αre^{-\alpha r}e−αr alone is not an exact free-Schrödinger solution.
To obtain genuinely exponential profiles, use the modified Helmholtz (massive mediator) or Poisson (massless mediator) equation for a mediator field ϕ\phiϕ: (∇2−μ2) ϕ(r,t)=−4π S(r) e−iωt ⇒ Gμ(r)=e−μr4πr.(\nabla^2-\mu^2)\,\phi(\mathbf r,t)= -4\pi\,S(\mathbf r)\,e^{-i\omega t} \;\;\Rightarrow\;\; G_\mu(r)=\frac{e^{-\mu r}}{4\pi r}.(∇2−μ2)ϕ(r,t)=−4πS(r)e−iωt⇒Gμ(r)=4πre−μr.
Thus a point source SA δ(r−rA)S_A\,\delta(\mathbf r-\mathbf r_A)SAδ(r−rA) yields ϕA(r,t)=SA4π e−μ∣r−rA∣∣r−rA∣ e−iω1t.\phi_A(\mathbf r,t)=\frac{S_A}{4\pi}\,\frac{e^{-\mu|\mathbf r-\mathbf r_A|}}{|\mathbf r-\mathbf r_A|}\,e^{-i\omega_1 t}.ϕA(r,t)=4πSA∣r−rA∣e−μ∣r−rA∣e−iω1t.
In the quasi-static limit μ→0\mu\to 0μ→0 (massless mediator), G0(r)=1/(4πr)G_0(r)=1/(4\pi r)G0(r)=1/(4πr): you recover the 1/r1/r1/r behavior.
3) Effective potential and the 1/R1/R1/R law
If BBB couples to AAA’s field with coupling gBg_BgB (and AAA with gAg_AgA), the interaction energy at BBB is proportional to the received field: VAB(R,t)=gB ℜ ϕA(B,t)=gAgB4π e−μRR cos(ω1t+φ).V_{AB}(R,t)= g_B\,\Re\,\phi_A(B,t) = \frac{g_A g_B}{4\pi}\,\frac{e^{-\mu R}}{R}\,\cos(\omega_1 t+\varphi).VAB(R,t)=gBℜϕA(B,t)=4πgAgBRe−μRcos(ω1t+φ).
After time averaging (or if ω1≃ω2\omega_1\simeq\omega_2ω1≃ω2), the envelope is VAB(R)∝e−μRR \boxed{\,V_{AB}(R)\propto \dfrac{e^{-\mu R}}{R}\,}VAB(R)∝Re−μR
with radial force F(R)=−∂RV R^=−gAgB4π e−μR (1R2+μR)R^.\mathbf F(R)=-\partial_R V\,\hat{\mathbf R} = -\frac{g_A g_B}{4\pi}\,e^{-\mu R}\!\left(\frac{1}{R^2}+\frac{\mu}{R}\right)\hat{\mathbf R}.F(R)=−∂RVR^=−4πgAgBe−μR(R21+Rμ)R^.
In the long-range limit μR≪1\mu R\ll1μR≪1 (“quasi-massless” mediator), this reproduces a 1/R21/R^21/R2 gravity-like law.
4) Useful identities (quick validation)
- Laplacian of radial exponentials:
∇2 (e−αr)=e−αr (α2−2αr).\nabla^2\!\big(e^{-\alpha r}\big)= e^{-\alpha r}\!\left(\alpha^2-\frac{2\alpha}{r}\right).∇2(e−αr)=e−αr(α2−r2α).
- Green’s function:
∇2 (e−μrr)=μ2e−μrr−4π δ(r).\nabla^2\!\left(\frac{e^{-\mu r}}{r}\right)=\mu^2\frac{e^{-\mu r}}{r}-4\pi\,\delta(\mathbf r).∇2(re−μr)=μ2re−μr−4πδ(r).
The 1/r1/r1/r singularity (and thus the far-field 1/R1/R1/R) comes from the Green’s function structure G(r)∼1/rG(r)\sim 1/rG(r)∼1/r, not from a bare e−αre^{-\alpha r}e−αr without the 1/r1/r1/r factor.
In two lines
- Superpose localized waves: Ψ=ψA+ψB\Psi=\psi_A+\psi_BΨ=ψA+ψB with envelopes e−αre^{-\alpha r}e−αr.
- To obtain a potential ∼1/R\sim 1/R∼1/R (and force ∼1/R2\sim 1/R^2∼1/R2), the mediator field must obey Poisson/Helmholtz, whose Green’s function is G(r)∼e−μr/rG(r)\sim e^{-\mu r}/rG(r)∼e−μr/r. Then VAB(R)∝e−μR/RV_{AB}(R)\propto e^{-\mu R}/RVAB(R)∝e−μR/R, and μ→0⇒V∝1/R\mu\to 0\Rightarrow V\propto 1/Rμ→0⇒V∝1/R.


