Ringkasan Matematis (jumlah gelombang e-αr)

1) Ansatz (dua partikel A dan B)

Modelkan setiap partikel sebagai sumber isotropik monokromatik, terlokalisasi, dan isotropik dari medan skalar yang kompleks (“gelombang materi”):

\[ \psi_A(\mathbf r,t)=A\,e^{-\alpha|\mathbf r-\mathbf r_A|}\,e^{-i\omega_1 t}, \qquad \psi_B(\mathbf r,t)=B\,e^{-\beta|\mathbf r-\mathbf r_B|}\,e^{-i\omega_2 t} \]

dan superposisi:

\[ \Psi(\mathbf r,t)=\psi_A(\mathbf r,t)+\psi_B(\mathbf r,t) \]

Beralih ke koordinat bola di sekitar B: tulis \(\mathbf r=\mathbf r_B+\mathbf s\) dengan \(r=|\mathbf s|\ll R\), dan tentukan:

\[ R = \\mathbf r_B-\mathbf r_A|,\quad |\mathbf r-\mathbf r_B|=r,\quad |\mathbf r-\mathbf r_A|=|\mathbf R-\mathbf s| \]

Untuk \(r\ll R\):

\[ |\mathbf R-\mathbf s|\pendekatan R- r\cos\theta + O(r^2/R) \]

begitu dekat dengan B:

\[ \psi_A(\mathbf r,t)\approx A\,e^{-\alpha R}\,e^{+\alpha r\cos\theta}\,e^{-i\omega_1 t}, \qquad \psi_B(\mathbf r,t)=B\,e^{-\beta r}\,e^{-i\omega_2 t} \]

Pada titik \(B_0\) (yaitu \(r=0\)), kontribusi dari A adalah:

\[ \psi_A(B_0,t)=A\,e^{-\alpha R}\,e^{-i\omega_1 t} \]

2) Persamaan gelombang mana yang digunakan?

Persamaan Schrödinger bebas yang benar adalah:

\[ i\hbar\,\partial_t\Psi = -\frac{\hbar^2}{2m}\,\nabla^2\Psi \]

Keadaan stasionernya adalah gelombang bidang/bola yang berosilasi; sebuah amplop \(e^{-\alpha r}\) saja bukanlah solusi Schrödinger bebas yang eksak.

Untuk mendapatkan profil eksponensial, gunakan persamaan Helmholtz atau Poisson:

\[ (\nabla^2-\mu^2)\,\phi(\mathbf r,t)= -4\pi\,S(\mathbf r)\,e^{-i\omega t} \;\;\Panah kanan\;\; G_\mu(r)=\frac{e^{-\mu r}}{4\pi r} \]

Untuk sumber titik:

\[ \phi_A(\mathbf r,t)=\frac{S_A}{4\pi}\,\frac{e^{-\mu|\mathbf r-\mathbf r_A|}}{|\mathbf r-\mathbf r_A|}\,e^{-i\omega_1 t} \]

Dalam batas kuasi-statis \(\mu\hingga 0\):

\[ G_0 (r) = \frac{1}{4\pi r} \]

3) Potensi efektif dan hukum 1/R

Jika B berpasangan dengan medan A dengan kopling \(g_B\), maka energi interaksinya adalah:

\[ V_{AB}(R,t)= \frac{g_A g_B}{4\pi}\,\frac{e^{-\mu R}}{R}\cos(\omega_1 t+\varphi) \]

Setelah rata-rata waktu (atau jika \(\omega_1\simeq\omega_2\)):

\[ V_{AB}(R)\propto \frac{e^{-\mu R}}{R} \]

Gaya yang sesuai adalah:

\[ \mathbf F(R)=-\frac{g_A g_B}{4\pi}\,e^{-\mu R}\kiri(\frac{1}{R^2}+\frac{\mu}{R}\kanan)\hat{\mathbf R} \]

Pada batas jarak jauh \(\mu R\ll 1\), ini mereproduksi hukum gravitasi seperti 1/R².

4) Identitas yang berguna (validasi cepat)

Laplacian dari eksponensial radial:

\[ \nabla^2(e^{-\alpha r})= e^{-\alpha r}\left(\alpha^2-\frac{2\alpha}{r}\right) \]

Identitas fungsi Green:

\[ \nabla^2\!\left(\frac{e^{-\mu r}}{r}\right)=\mu^2\frac{e^{-\mu r}}{r}-4\pi\delta(\mathbf r) \]

Singularitas 1/r (dan hukum 1/r medan jauh) berasal dari struktur fungsi Green \(G(r)\sim 1/r\), bukan dari \(e^{-\alpha r}\) tanpa faktor \(1/r\).

Dalam dua baris

  • Mengandaikan gelombang yang terlokalisasi: \(\Psi=\psi_A+\psi_B\) dengan amplop \(e^{-\alpha r}\).
  • Untuk mendapatkan potensi \(\sim 1/R\) (dan gaya \(\sim 1/R^2\)), mediator harus mematuhi Poisson/Helmholtz: \(G(r)\sim e^{-\mu r}/r\). Kemudian \(V_{AB}(R)\propto e^{-\mu R}/R\), dan untuk \(\mu\to 0\): \(V\propto 1/R\).